Exercise 5

Use residues to derive the integration formulas in Exercises 1 through 6.

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{6} .
$$

Solution

The integrand is an even function of x, so the interval of integration can be extended to $(-\infty, \infty)$ as long as the integral is divided by 2 .

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\int_{-\infty}^{\infty} \frac{x^{2} d x}{2\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)},
$$

and the contour in Fig. 99. Singularities occur where the denominator is equal to zero.

$$
\begin{array}{cll}
2\left(z^{2}+1\right)\left(z^{2}+4\right)=0 \\
z^{2}+1=0 & \text { or } & z^{2}+4=0 \\
z= \pm i & \text { or } & z= \pm 2 i
\end{array}
$$

The singular points of interest to us are the ones that lie within the closed contour, $z=i$ and $z=2 i$.

Figure 1: This is Fig. 99 with the singularities at $z=i$ and $z=2 i$ marked.
According to Cauchy's residue theorem, the integral of $z^{2} /\left[2\left(z^{2}+1\right)\left(z^{2}+4\right)\right]$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=2 \pi i\left[\operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}+\operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right]
$$

This closed loop integral is the sum of two integrals, one over each arc in the loop.

$$
\begin{aligned}
& \int_{L} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}+\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)} \\
& \qquad=2 \pi i\left[\operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}+\operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right]
\end{aligned}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rll}
L: & z=r, & r=-R \quad \rightarrow \quad r=R \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\begin{aligned}
& \int_{-R}^{R} \frac{r^{2} d r}{2\left(r^{2}+1\right)\left(r^{2}+4\right)}+\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)} \\
&=2 \pi i\left[\operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}+\operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right] .
\end{aligned}
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\int_{-\infty}^{\infty} \frac{r^{2} d r}{2\left(r^{2}+1\right)\left(r^{2}+4\right)}=2 \pi i\left[\operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}+\operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right]
$$

The denominator can be written as $2\left(z^{2}+1\right)\left(z^{2}+4\right)=2(z+i)(z-i)(z+2 i)(z-2 i)$. From this we see that the multiplicities of the $z-i$ and $z-2 i$ factors are both 1 . The residues at $z=i$ and $z=2 i$ can then be calculated by

$$
\begin{aligned}
& \operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=\phi_{1}(i) \\
& \operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=\phi_{2}(2 i),
\end{aligned}
$$

where $\phi_{1}(z)$ and $\phi_{2}(z)$ are equal to $f(z)$ without the $z-i$ and $z-2 i$ factors, respectively.

$$
\begin{aligned}
& \phi_{1}(z)=\frac{z^{2}}{2(z+i)(z+2 i)(z-2 i)} \quad \Rightarrow \quad \phi_{1}(i)=\frac{i}{12} \\
& \phi_{2}(z)=\frac{z^{2}}{2(z+i)(z-i)(z+2 i)} \quad \Rightarrow \quad \phi_{2}(2 i)=-\frac{i}{6}
\end{aligned}
$$

So then

$$
\begin{aligned}
& \operatorname{Res}_{z=i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=\frac{i}{12} \\
& \operatorname{Res}_{z=2 i} \frac{z^{2}}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=-\frac{i}{6}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{r^{2} d r}{2\left(r^{2}+1\right)\left(r^{2}+4\right)} & =2 \pi i\left(\frac{i}{12}-\frac{i}{6}\right) \\
& =2 \pi i\left(-\frac{i}{12}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\pi}{6} .
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the semicircular arc in Fig. 99 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)} & =\int_{0}^{\pi} \frac{\left(R e^{i \theta}\right)^{2}\left(R i e^{i \theta} d \theta\right)}{2\left[\left(R e^{i \theta}\right)^{2}+1\right]\left[\left(R e^{i \theta}\right)^{2}+4\right]} \\
& =\int_{0}^{\pi} \frac{R^{3} i e^{i 3 \theta}}{\left(R^{2} e^{i 2 \theta}+1\right)\left(R^{2} e^{i 2 \theta}+4\right)} \frac{d \theta}{2}
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right|=\left|\int_{0}^{\pi} \frac{R^{3} i e^{i 3 \theta}}{\left(R^{2} e^{i 2 \theta}+1\right)\left(R^{2} e^{i 2 \theta}+4\right)} \frac{d \theta}{2}\right| \\
& \leq \int_{0}^{\pi}\left|\frac{R^{3} i e^{i 3 \theta}}{\left(R^{2} e^{i 2 \theta}+1\right)\left(R^{2} e^{i 2 \theta}+4\right)}\right| \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{\left|R^{3} i e^{i 3 \theta}\right|}{\left|R^{2} e^{i 2 \theta}+1\right|\left|R^{2} e^{i 2 \theta}+4\right|} \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{R^{3}}{\left|R^{2} e^{i 2 \theta}+1\right|\left|R^{2} e^{i 2 \theta}+4\right|} \frac{d \theta}{2} \\
& \leq \int_{0}^{\pi} \frac{R^{3}}{\left(\left|R^{2} e^{i 2 \theta}\right|-|1|\right)\left(\left|R^{2} e^{i 2 \theta}\right|-|4|\right)} \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{R^{3}}{\left(R^{2}-1\right)\left(R^{2}-4\right)} \frac{d \theta}{2} \\
&=\frac{\pi}{2} \frac{R^{3}}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
\end{aligned}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\begin{aligned}
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right| \leq \lim _{R \rightarrow \infty} & \frac{\pi}{2} \frac{R^{3}}{\left(R^{2}-1\right)\left(R^{2}-4\right)} \\
& =\lim _{R \rightarrow \infty} \frac{\pi}{2 R} \frac{1}{\left(1-\frac{1}{R^{2}}\right)\left(1-\frac{4}{R^{2}}\right)}
\end{aligned}
$$

The limit on the right side is zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}\right|=0
$$

The only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{2} d z}{2\left(z^{2}+1\right)\left(z^{2}+4\right)}=0
$$

